Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?
نویسندگان
چکیده
While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species), indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type.
منابع مشابه
Fine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest
Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine ro...
متن کاملDiversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants
Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community stru...
متن کاملLinking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.
The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively f...
متن کاملMycorrhizal fungi and roots are complementary in foraging within nutrient patches.
The roots of the majority of tree species are associated with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. The absorptive roots of tree species also vary widely in their diameter. The linkages between root thickness, mycorrhiza type and nutrient foraging are poorly understood. We conducted a large root ingrowth experiment in the field to investigate how absorptive roots of ...
متن کاملRoot morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.
Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific ro...
متن کامل